フェイクニュースを科学する

拡散するデマ、陰謀論、プロパガンダのしくみ

エコー・チェンバーを疑似体験

第1版第2刷の誤植と補足説明

  • 下記5, 7, 8は修正済み。

第1版第1刷の誤植と補足説明

  1. p.29, 30: マケドニア →マケドニア(全部で4箇所)
    • 2019年2月以降は、「北マケドニア共和国」あるいは「北マケドニア」と表記されるようになりました。[Link]
  2. p.46:最初の投稿がリツイートされる →最初の投稿が深さ10までリツイートされる
  3. p.47 図1-8のY軸:平均時間(分)
  4. p.62 マントラ→曼荼羅
  5. p.79 図2-5:この図は、K. Sasahara et al (2013)のサンプリングデータを利用した分析なので、デマツイートを網羅しているわけではありません。このデマツイートの詳細な分析はTakayasu et al (2015)が詳しいです。
  6. p.145:「さらに、同研究グループは、フェイスブックのビッグデータと計算モデルの結果を比較し、「質が高いから共有されるミームと、質が低くても拡散されるミームは、統計的に見分けがつかない」ことを示しました」
    • Qiu et al (2017)の図4dと図5に計算間違いが発見され、2019年1月9日に論文が取り下げられました [Link]。「情報過多と有限の認知の相乗効果によって質が低くても拡散されるミームがある「という理論的予測が間違っているわけではありませんが、それだけではフェイスブックのデータから得られる分布を再現するには不十分だったということです。増刷のタイミングで、この箇所は適切な表現に修正します。
  7. p.165 :立憲民主党のツイッターアカウントが急増 → (修正)立憲民主党のツイッターアカウントのフォロワーが急増
  8. p.165 :これらの事例のように、バスフィード・ジャパンは →(修正)これらの事例のように、バフィード・ジャパンは

本書の出版後に出た重要論文

  • K. Sasahara, W. Chen, H. Peng, G. L. Ciampaglia, A. Flammini and F. Menczer, On the Inevitability of Online Echo Chambers, arXiv:1905.03919 (2019)
    • エコーチェンバーの発生メカニズムに関する計算モデルを提案し、Twitterのデータで妥当性を検討した
  • Grinberg, N., Joseph, K., Friedland, L., Swire-Thompson, B. & Lazer, D. Fake news on Twitter during the 2016 U.S. presidential election. 6 (2019).
    • 米大統領選2016において、Twitter上の偽ニュースの8割は1%のユーザによるもの、共有された偽ニュースの8割は0.1%のユーザによるものだった
  • Guess, A., Nagler, J. & Tucker, J. Less than you think: Prevalence and predictors of fake news dissemination on Facebook. Science Advances 5, (2019).
    • 米大統領選2016において、Facebook上の偽ニュースの拡散は保守系高齢者に多い傾向があった